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ABSTRACT

Based on theories of laminate anisotropic elasticity and interlaminar frac-
ture, the complete solution structure associated with a composite delamination
is determined. Fracture mechanics parameters characterizing the interlaminar
crack behavior are defined from asymptotic stress solutions for delaminations
with different crack-tip deformation configurations. A numerical method employ-
ing singuiar finite elements is developed t¢ study delaminations in fiber com-
posites with any arbitraiy combinatiors of lamination, material, geometric, and
crack variables. The special finite elements include the exact delamination stress
singularity in its formulation. Tne method is shown to be computationall accurate
and efficient, and operaticnally simple. To illustrate the basic nature of com-
posite delamination, solutions are shown for edge-delaminated [6/-8/-9/8] and
[(:9)/(:6)/90°/§6°]s graphite-epoxy systems under uniform axial extension. Three-
dimensional crack-tip stress intensity factors, associated energy release rates,
and delamination crack-closure are determined for each individual case. The basic
mechanics and mechanisms of composite delamination are studied, and fundamental
characteristics urique to recently proposed tests for interlaminar fracture tough-
ness of fiber composite laminates are examined. Influences cf lamination, geome-

tric, and crack variables on the delamination behavior are investigated.
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1. INTRODUCTION

In an associate paper [1], the fundamental nature of stress singularity
and asymptotic solution fields associated with a delamination between
dissimilar anisotropic fiber composites have been studied. Lekhnitskii's
complex~variable stress potentials [2] in conjunction with an eigenfunction
expansion method have been used in the formulation and establishment of the
general solution., The eigenvalues, especially the ones which characterize the
strength of stress singularity, for delaminations with different local
traction boundary conditions near the crack tip have been determined., Of
particular iaterest are the asymptotic deformation and stress governing the
composite delamination fracture. Since logarithmic terms are absent in the
solutions for the delamination stress and deformation [1], the general
structure of the complete solutions consists of only a power-type
eigenfunction series of both singular and higher-order terms. The set of
unknown constants in the eigenfunction series solution for a delamination
problem can only be determined by solving the complete boundary-value problem
with a full consideration of overall composite geometry, lamination and
material variables, remote boundary conditions, and end loading conditions,

In a finite-dimensional fiber composite laminate with simple lamination
variables and crack geometry, for example, a symmetric angle-ply [06/-8/-8/0]
composite containing edge delaminations along the 6 and -6 ply interface, the
complete laminate elasticity solution can be determined in an explicit form by
the use of different analytical methods such as the boundary-collocation
method [3]}. However, for a composite laminate having more than four plies,
the aforementioned coliocation method is not applicable, and a more general

and versatile method of approach to the problem is needed. The situation

could become extremely complex for delaminations in a composite containing a



large number of plies with different fiber orientations and laminar
thicknesses. The almost unlimited number of variables in a general composite
delamination problem requires the development of an advanced analytical method
which can not only deal with the local singular behavior of the delamination
but also take into account various combinations of lamination, materizl,
geometric, and crack variables. Numerical methods such as finite element
methods are considered to be most attractive because of their versatility in
handling mechanics problemcs with complex structural geometry and material
properties, In this paper, the currently developed laminate elasticity
solution i{s incorporated in the formulation of a set of conforming finite
elements with singular derivative fields {4]. The special crack-tip elements
are cnown later to be particularly suitable for modeling the composite
delamination problem. The use of laminate elasticity solutions derived from
the associated paper [i] permits the inclusion of exact delamination stress
singularities in finite element formulation, leading to extremely accurate and
efficient numerical solutions for studying the fundamental behavior of
composite delamination with complex lamination variables and geometric
parameters,

Specific cbjectives of this paper are to: (1) establish complete
solution structures for different delamination configurations to serve as a
basis of formulating an advanced numerical method, (2) construct special crack
elements of various kinds to model the composite delamination, (3) properly
define interlaminar fracture mechanics parameters, e.g., stress intensity
factors and energy release rates, for general composite laminates, (4) examine
the fundamental behavior and assoclated characteristics of the composite
delamination, and (5) assess influences of lamination, geometric and crack

variables on the delamination response and composite failure modes.



In the next section, the general structure of complete solutions for
delamination stress and displacement fields is given, Fracture mechanics
parameters in terms of interlaminar crack-tip stress intensity factors and
strain energy release rates are defined for various deformation modes of
composite delamination. Special six-node, quasi three-dimensional crack
elements for the present composite delamination problem are introduced in
Section 3. Formulations of the singular elements and adjacent nonsingular
eight-node isoparametric elements are briefly outlined. Solution strategy and
computational scheme for the delamination problem, especially in the case that
crack-surface closure (i.e. the contact problem) occurs, are discussed.
Computational methods for evaluating stress intensity factors and energy
release rates by using the singular finite elements are given in detail, 1In
Section 4, solution accuracy and convergence are studied to demonstrate the
efficiency and effectiveness of the present approach. The fundamental
behavior and unique characteristics of composite delamination are examined in
Section 5. Two graphite-epoxy laminate systems, i.e.,, symmetric angle-ply
[9/-68/-0/8] and symmetric [(te)/(te)/90°/§6?]S composites, with delaminatiouns
emanating from laminate edges are studied, Delaxzination crack-tip deformation
and fracture mechanics parameters are determined for each case. Influences of
fiber orientation, ply thickness, and crack size on delamination failure

mechanics and mechanisms are investigated also.



2. COMPLETE SOLUTION AND FRACTURE MECHANICS PARAMETERS

2.1 Complete Solutions for Stress and Displacement

As discussed in the associated paper [l], the eigenvalues &, can be
determined by solving the transcendental characteristic equation Eq. 20 in
[1]. Depending upon the local crack-tip boundary conditions and the interface
continuity conditions, the Gn have the following values:

(1) delamination with open crack surfacec

n -1 (single root),
Gn =4n (triple roots),
(o - 92) + 1y (single root), (n = 0,1,2,...®);

(1i1) delamination with closed crack surfaces in frictionless contact

n -1l (double roots),

n (quadruple roots), (n = 0,1,2,...%);

(iii) delamination with closed crack surfaces in frictional contact

n - (single root),
6n =4n ~ B (single root),
n (quadruple roots), (n =0,1,2,...%),

Once the values of 8, are determined, the relationship among Cy's can be found
and the complete solutions for displacement and stress can be established in
explicit forms. For example, for a delamination with homogeneous local
boundary conditions in a composite laminate subjected to placar loading, the
complete solutions for stress and displacement components have the following

expressions:



OQRIGINAL P73 1§
OF POOR QUALITY

o (1), ,n-Y¥ (1) a- Y,
o, = nZo(cl“ kgl{ne[b MpZe 21+ Imbbgiayg .2 2]}

+ ? ey, (2)+°3nb§3)] Re(hy 2)) + ey b kA)] In(A,, 2,0}
k=

6 6
(5) Yy +iy (5) n- Y +y
+ {csnRe[kz1 ben A I+ cqInl Z %n Aick D)+,
A = 1,2,4,5,6), (1)
- 3
(Dr oot ) (1) n+ 1y
4y = nzo(cln kzl{Relb Faemidie o)+ albgaay TigaanZc 2 1M (et dp)
p(2) (3) b4 Zo+1
* kzl{lcz vy by IRl (2 /D) + e by Tl (g gy, 25/ ) ])
& (5 ot Iy +y 1
+ {csnRe[kzl bea T(5+394%k [ (ot Yy +iy) ]
8 (5 wrlpHy, Ly
%nglknruﬂmﬁ [ Y+ 1Y) +u 0 (3= 1,2,3), (D)

(a)

where bkn are known eigenvectors corresponding to the unknowns c,, for each
given bn, and o,y and upy are known quantities from particular solutions for
each individual case. We ncte that the bl((:) are found to be the same for
all 6;13 because of the involvement of the term e1“¢(¢> = % and -%) in the

13(6n) matrix. The constants Aik and Ty, are defined as
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where M, M, Px» dk» tk are related to ply stiffness matrix and can be found
in [2,3]. The expressions for stresses and displacements for delamination
with closed crack surfaces, i.e., nonvanishing local traction boundary
conditions, can be easily determined to have forms similar to Eqs. 1 and 2 but
with slight modifications owing to different numbers of algebraic multiplicity

of the eigenvalues involved.

2.2 Delamination Stress Intensity Factors and Energy Release Rates

The stress and displacement fields for a delamination are shown in the
preceding section to possess general form of Eqs, 1 and 2 with unknown
constants ¢, to be determined. A proper analytical or numerical method with
the aid of global laminate boundary conditions and remote loading conditions
is required to determine the detailed solution for the complete bouandary-value
problem, Since the interlaminar fracture 1is controlled by local stress and
deformation, the asymptotic solution is of primary importance and interest in
understanding the near-field behavior and fracture phenomenon. The asymptotic
solution is recognized to be singular in nature and governed by the
delamination stress singularities, which have beea obtained in detailed in
[1]. As pointed out in the associated paper [l], the singular eigenvalues
depend upon the local delamination configuration; thus, distinct structures of
asymptotic solutions are obtained for different crack-tip deformations.

Ir general, the asymptotic solution for a delamination stress field can

be written in the following form:
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where 2 and ik have their origin located at the delamination tip.

(1) (1)
The f1k and fi(k+3) are functions of lamina material constants, lamination
variables, and loading conditions. The integer £ is the total number of

eigenvalues Gj which satisfy the constraint condition,
-1 < Re[GJ] <0 (5)

For the convenience of further developments, Eq. 4 may be rewritten as

o, = Z R CRT 890 (6)
i=1
where sij) is the jth component (corresponding to the eigenvalue 61) of the

asymptotic stress 0; in the polar coordinate system,

In view of the asymptotic solution structures given in Eq. 4 and those
given in [1,5,6], it is possible to define, in the context of interlaminar
fracture mechanics, the delamination stress intensity factors and strain
energy release rates in a manner ¢ 3istent with those for a homogeneous crack
and for the refined model of an interface crack between dissimilar isotropic
media [7,8]. For example, in the case of a closed delaminatinn with crack
surfaces in frictionless contact, the stress intensity factors can be
introduced by considering the crack-tip interlaminar stresses oy, 0g and 0y

(L.ee, 0y, Tuys Tyms OF Oaa, Tra, T,.) along the ply interface ¢ = 0 as
y* 'xy* 'yz $6* "ré> “zd



K = lim_ ¥-27r oz(r,O) (7a)
r+0

Kpp = lim, /27r o((r,0) (7b)
r+0

Krpr = 113+ /2ne oA(r,O) (7c)
r

where r = 0~ and O denote the positions infinitesmally behind and ahead of
the crack tip, respectively, because the normal traction 0y is finite ahead of
a closed crack tip where shear tractions dg and o, are singular.

The strain energy release rate, G, and its components G; (1 = 1,2,3) may
be evaluated by using Irwin's virtual crack extension concept [9] as

G =G + Gy + Gy

L ™ (m) (m+1)
= gfom(f) {o,(r,0)[uy"" (8a=r,m) = uy" " (&a-r,=n)]

+ 06(r,0)[u§m)(&1-r,w) ~ u§m+1)(&z-r,-n)]
+ 0,(r,0[u{™ (sa-r,m) - u{™D (&a-r,-m]}ar, (8

where & 1s the length of virtual crack extension. The interlaminar stresses,
0y, Og, and 04, in Eq. 8 can be obtained from the asymptotic stress field such
as Eq. 4. The corresponding displacements are also those of the asymptotic
field equatioas discussed in the previous section. In terms of the
delamination 3tress intensity solutions L the G and Gi for a closed crack

can be shown to have a simple expression as
]
G = Gz + G3 = Z‘ (AZKII + A3KIII) (9)

In Eq. 9, G is identically zero because of the displacement continuity across

the closed delamination surfaces,

uém)(r.") i “gml)(r-‘") =0 < <r<o, (10a)



and A, and A3 are evaluated from [S] with

ugm) - uglﬁ"‘l) = Azm-r (10b)
ug“‘) - u§m+1) = 4,/7[8F (10¢)

as r » 0%,

For a delamination with extremely small crack closure, the simplified
model by taking the limiting case of a partially closed crack discussed in
[5,6] is used. The stress intensity solutions Ky and Kyyy are the same as
those given in Eqs. 7(b) and 7(c), but the K; 1s defined at r + ot as

K; = lim, /27r 0,(r,0). (11)
r+0
And the corresponding strain energy release rates G and G;, then, have the

form,

n
G = Gl + 62 + G3 =3 (AIKI + AZKII + A3K111)° (12)
In the case that a fully opened delamination is assumed aad the

eigenfunction expansion series is used for the asymptotic solution, the

delamination stress intensity factors are introduced as [3]

3 W
Kp = lo, J YIn ¢ ] szj (r,O;Gj), (13a)
r*0 j=1
3 W
Kip = lm, 1 /2 r 3 s6j (r,O;Gj), (13b)
r+0 j=1
3 b5
Krgp = Um Z Yon ¢ 8, (r,O;GJ). (13¢)

>0 3=l
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We note that in this case exact integration in Eq, 8 can be carried out and
the strailn energy release rate, G, can be determined easily. However,
individual components G; can not be separated explicitly in the integration
because of the complex mathematical structure of the asymptotic solutions.
Other methods such as the hybrid singular finite element analysis [10,11] are

needed to determine the values of individual Gi'
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3. COMPUTATION OF FIELD SOLUTIONS ARD FRACTURE MECHANICS PARAMETERS

We have thus far obtained the complete solutions for stress and
displacement and the fracture mechanics parameters from the asymptotic
solutions for each individuval case. The unknown constaats c,, as well as K,
and G; are to be determined by solving the complete boundary-value problea,
involving remote loading conditions and global geometric and lamination
parameters. Now consider a finite-width composite laminate containing
delaminations under mechanical loading as shown in Fig, 1 in [1]. As
mentioned in Section 1, several numerical methods could be used to determine
the complete solution for the delamination problem in 2 finite dimensional
laminate. Owing to the singular nature of the interlaminar crack, the complex
structural geometry, and numerous lamination parameters involved, the special
numerical method employing recently introduced conforming singular finite
elements is an attractive approacp to the current problem. In this approach,
the exact delamination stress singularities can be included in the formulation
of the special elements. Thus, the unknown constants associated with the
asymptotic solution and the fracture mechanics parameters goveraing the
delaminatiorn behavior can be evaluated counveniently with a high degree of

accuracy and a fast rate of solution convergence.

3.1 Singular Crack-Tip Elements and Surrounding Nonsiogular Elements

In this study, we generalize the formulation and concepts of the
conisrming singular elements originally introduced for homogeneous 1isotropic
elasticity problems [4] tr the present quasi three-dimensional, anisotropic
composit~ delamination problem. Formulation of the singular elements is based
on select’on of shape functions and their derivatives containing the exact

eigeavalues which meet the constraint condition Eq. 5 of stress singularity
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derived from the aforemeationed eigenfunction analysis for the composite
delamination. Detailed discussion of the nature of the singular elements has
been given in (4]. Ounly relationships relevant to the current development are
given here.

Consider a six-node triangular element with three degrees of freedom per
node and stress singularity at node 1 as shown in Fig. 1(a). The element has
general rectilinear anisotropic material properties with elastic compliance
sij' By a proper transformation, any point in the element defined in global
Cartesian coordinates (x,y,z) can be referred to both local polar coordinates
(r,¢,2) and triangular coordinates (p,£,z) with the origin located at node
l. Within the element, the displacement components 2 are related to the nodal

displacements q by the interpolation (or shape) function Ns as

u = U(x,y) +u/ with U=N_ q, (14a,b)

where u  are known quaatities resulted from applied loading, and

E? = { U, Uy, u3}, g: = {uol’ u s uo3}, (15a)
q" = fqil). b, b, qu), a$?, o2, ..., qiﬁ), qgﬁ). qg(’)}, (15b)
E.‘S = §S (D) £; Gj), (ISC)

in which the superscriptT denotes transpose of the associated coelummn vector, and
the number in the superscript parentheses in Eq. '3(b) refers to the
assoclated nodal number of q. Explicit expressions of the shape

fuaction gs’ involving proper eigenvalues Gj determined for each individual
delamination problem from [1] and local coordinates, are givea in Appendix

1. Equation 14(b) can be written in a more explicit form as follows:

§ +1
U={pd ME) +L(p,E)} q, (16)
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where L(p,£) is the nonsingular polynomial part of NB(p,E;Gj), independent of
the number and location of nodes along the 2-3 edge of the element. Using the
minimum potential energy theorem and following the same procedure as the

conventional displacement-based finite element formulation, we can construct

the element stiffness matrix ks for the crack-tip element as

& - I e, e an
S

where C is the material stiffness matrix, and Bs has the form

§.+1
B =3 M+L). (18)

-~

In Eq. '8, the ? is a matrix differential operator. We remark that the shape
function of the singular element is chosen such that the element conforms with
a nonsingular quadratic element matched through the common element boundary
(i.e., along edge 2-3), and with singular elements of the same formulation
through boundaries 1-2 and 1-3.

The surrounding nonsingular elements used in this study are quasi three-
dimensional, eight-node isoparametric elements [Fig. l(b)}] with 24 degrees of
freedom (three D,0.F.'s per node). Formulation of the element stiffness
matrix for the nonsingular element has been given in detail in [12,13]. The

element stiffness matrix kr for the adjacent element can be shown as

T
ke = Jf B 8, 0, (19)
where r
?r = ? !t‘ (20)

The shape function Nr for an eight-node, quasi three-dimensional 1isoparametric
element has standard quadratic expressions which can be found in [12,13].
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3.2 Solution Procedure and Iteration Scheme for Crack Closure

In the finite ciement discretization of the delaminated composite, the
singular elements are placed in a ring form with the delamination tip as the
common node (Fig. 2). The element stiffness matrices Es and Er are true
stiffness matrices relating unknown nodal displacements to nodal force
vectors. The standard procedure of the matrix-displacement method [14] can be
used to assemble the global stiffness matrix 5 and loading vector ? leading to

the relationship,
Kq=Q+aq, (21)

where Qo denotes the additional nodal force resulted from the applied strain

€,»> and the assemblage may be expressed symbolically by

9 Or
k=] kD4 ] D), (22a)
~ sl - j=1 -

ns . nl'
Q= 1{1 ot + 421 P, (22b)

in which ng and n, are the total numbers of singular and nonsingular elements,
respectively.

In actual numerical computation of a delamination problem, a finite
length of crack closure i1s assumed first, The problem now becomes an elastic
contact problem because a part of the local boundary conditions is not known
and needs to be determined from the solution. Specifically, the following
continuity conditions are required along the closed portion of the

delamination, -c < r < O:
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{og(x,m)] = 0, (23a)

[uz(r,n)] = (, (23b)
where the bracket [ ] denotes the jump of the associated quantity across the
closed crack surfaces, e.g., u§m+1)(r,-n) - ugm)(r,n) = 0. Thus, we solve
Eq. 21 in terms of unknown pressures along the closed crack surface and use
Eq. 23(a) to determine the contact stress on this surface. To enforce the
conditions Eqs. 23(a) and 23(b), the solution technique proposed by
Francavilla and Zienkiewicz [15] for an elastic contact problem is employed.
The numerical procedure iavolves an iteration scheme to determine crack
closure length and coantact stress along the delamination surface. If the
solution is admissible, the contact stress so obtained must be in compression
and the displacement field should have no overlapping or interpenetration
outside the contact region. In the case that crack closure length is found to
be extremely small, say, less than the order of 10-5 ~ 10-.6 times crack
length, the delamination is then assumed toc be open, and the simplified model
discussed in [1,5]) and in the preceding sections in this paper is used. For
the case of a delamination with finite-length crack closure, the detailed
iterative algorithm for evaluating crack closure and coatact stress is given
in Appendix 2.
3.3 Computation of Delamination Stress Intensity Factors and Energy Release

Rates
As mentioned in the preceding sections, the stress intensity factors and

energy release rates for a delamination are evaluated from the asymptotic
solution of interlaminar stresses 9y Op and 9, (or oy,
displacements uy along the plane of the crack., For a finite dimensional

txy and Tyz) and the

composite laminate containing delaminations, the asymptotic stress and

displacement can be conveniently determined by the aforementioned singular
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finite element method. Along the delamination plane £ = £, the near-field
stress and displacement fields are approximated by using Eq. 16 and {its
derivatives as

= o° R(E;0) 4, (24a)

tQ

5+1
P M(E) qtu , (24b)

[}

u

where E(EO;G) {3 a matrix of derlvatives of the shape function ? and ply
elastic constants, and the p and £, are related to the global coordinates by a
simple transformation given in Appendix 1.

For a partially closed delamination or a delamination with a very small
size of crack-tip closure for which the simplified model with inverse square-
root singularity is used, the stress intensity factors and strain energy
release rates can be evaluated easily from the singular finite element
results. Taking o and u along the delaminatioa crack plane
Eo =0 (i.e., ¢° = () , we can write the asymptotic interlaminar stresses and

displacements along the interface in simple expressions as

-1
o, * At 72 (i=2, k=1; 1=6, k=2, and
i=4, k=3), (25a)
1
o =By r /2 4 Yo (j=1, k=2; j=2, k=1, and
j=3, k=3), (25b)

where Ak and Bk are obtained from the corresponding components of R(E°;5) and M(Eo) in

Eqs. 24(a) and 24(b) by setting Eo =0, and § = -%&. Thus, the delamination

stress intensity factors K; can be easily determined by
K, = 4 A (1=1,11,11I), (26)

The energy release rates can be determined in a manner similar to that for Ky

through Eq. 8 as



17

g = Gl + G2 + G3

é;?o v1.73 f { 2 (Ak r l/‘2)[13 (8a-r) llzl}dr

o lim 1 Sa-r

= 5200 755 | Z AkBk( )  gr. (27a)

The term Uoj in Eq. 25(b) is not included, because it does not result in any
contributions to G; and G after integration. Integration of the singular
integral Eq. 27(a) can be carried out explicitly without difficulty. Then the
strain energy release rates have the form

3
"
G = 1& G, = 7{(AB, +AB, + AB,). (27b)
We remark here that each term in Eq. 27(b) corresponds to the individual Gy
components and that for a delamination with finfte crack closure, the first

term in Eq. 27(b) is identically zero, i.e., G| = O, because of the continuity

of displacement across the crack surface.
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4. SOLUTION ACCURACY AND CONVERGENCE

To demonstrate the accuracy and efficiency of the present method of
approach, a symmetric angle-ply [45°/-45%/-45°/45°] graphite-epoxy laminate
containing edge delaminations along the 45°/-45° ply interace is considered.
For simplicity and without loss of generality, the composite is assumed to be
subjected to uniform axial strain €, = €, along the z-axis and have a geometry
of b/h = 8 and h) = by = h = 0,25 inch and delaminations of length a = 0.25
inch emanating from the edges. Elastic ply properties of unidirectional high-
modulus graphite—epoxy identical to those of Eq. 28 in [1] are used. Owing to
the geometric and lamination symmetry, only a quarter of the cross sectional
area needs to be considered. In finite element discretization of the
continuum, twelve special crack-tip elements of identical size and shape (Tig.
2) are used to model the near-field response of the composite delamination,
The crack-tip elements are embedded in the mesh of eight-node, quasi three-
dimensional isoparametric elements. Local and overall mesh arrangements for
the finite element analysis of the composite delamination are shown in Fig.

3. To study the accuracy and convergence of field solutions, the mesh near
the crack tip is continuously refined by halving the lengths of equal sides of
the singular elements (e.g., the sides OE and OF in Fig. 3).

Using the computational method and the solution scheme discussed in the
preceding sections, numerical results are obtained for the convergence
study. Significantly global crack closure with c/a = 0.34 is found for the
delamination in the [45°/-45°/-45°/45°] graphite-epoxy under the uniform axial
extension, resulting in a negative K; and identically vanishing G;. [The
detailed nature of delamination closure and related problems will be discussed

in the next section.] In Tables 1 and 2, delamination stress intensity

factors and energy release rates associated with the finite-element mesh
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reiinement are shown for systemmatic reduction in crack-tip element size
(Ah/h) and increase in the total number of elements. It can be seen clearly
that stable and converged solutions for all K; and Gy are obtainable, as the
crack-tip elexment size becomes smaller than 0.lh and the associated total
number of elements exceeds 100. As anticipated, the delamination stress
intensity factors (Table 1) are sensitive to the size of the crack-tip
elements owing to the localized nature of the singular domain. However, the
strain energy release rates are relatively insensitive to the elcnent size and
mesh refinement (Table 2) because the Gy are related to the global structural
response of the delaminated composite. Furthermore, the crack-closure length
is also found to be insensitive to the mesh refinement in this case.

To assess the accuracy of the current solutions for the composite
delamination with global crack closure is not trivial because no analytical
and numerical solutions are available in the literature for comparison. The
only analytical study, which may be used as a reference, deals with the
delamination problem by assuming the crack surface being fully open and
employing an eigenfunction expansion method with the aid of a boundary
collocation technique [3]. In Fig. 4, stress intensity solutions determined
by the present singular finite element method including the crack-closure
consideration are presented as a function of delamination length in the [45°/
-45°/-45°/45°] graphite-epoxy. The dominant stress intensity factor Kirg
determined for the partially closed composite delamination by the present
approach is about 6 ~ 7% higher than the value for an open crack from the
boundary collocation results. However, solutions for K; obtained by using the
two distinct models differ from each other both in sign and in magnitude. In
the current singular finite element analysis of the delamination problem, Ky

is found always to be negative owing to the aforementioned crack closure,
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vhereas Ky determined for an assumed open crack is positive, Values of K;y
and Gy determined by the two approached are both negligibly small. The strain
energy release rates obtained for the delamination are given in Fig. 5. For
the partially closed delamination determined by the present approach, G; is
identically 2ero, whereas the value of 61/(10653) from the assumed open crack
model is of the order of 10~%-—a value much smaller than that of G3, the
dominant component of energy release rates. Despite the different nature at
the crack tip in these two approaches, the values of Gq differ only slightly
from each other,

We remark that though mathematically rigorous, the solution obtained
using the ei-enfunction expansion method with the assumption of open crack
surfaces is physically inadmissible because severe interpenetration of
dissimilar materials is found in the oscillatory displacement solution near
the crack tip. Thus, the preseat singular finite element approach with a
partially closed crack consideration provides physicaliy meaningful solutions
with a high degree of efficiency and accuracy for general composite

delamination problems.
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5. THE FUNDAMENTAL BEHAVIOR AND CHARACTERISTICS OF COMPOSITE DELAMINATION

In the preceding sections, we have introduced the complete solution
structure and defined the governing fracture mechanics parameters for the
delamination problem. Special finite elements with singular derivatives have
been formulated to model the near-field response of a delamination in a finite
dimensional composite laminate. Solution convergence and accuracy have been
affirmed In terms of computational parameters (e.g., the size of crack-tip
elemeuts, the degree of finite element discretization, etc.). Having
established these basic mechanics theories and the numerical method, we now
proceed to study the fundamental behavior and characteristics of delamination
in fiber composites with general lamination and geometric variables.

Two fiber composit; material systems are examined in this section: (1)
symmetric angle-ply [+6]; graphite-epoxy laminates with edge delaminations
between 9 and -9 plies, and (2) symmetric [(:9:6)/(1:6)/90°/'§53]s graphite-epoxy
with edge delaminations between -3 and 90° plies. The symmetric angle-ply
composite laminate system 1s selected because several unique delamination
characteristics are observed, which can be used to illustrate most clearly the
basic interlaminar fracture mechanics and failure modes. More importantly,
some of the most fundamental nature of delamination fracture determined from
the presently introduced physically admissible model and mathematically
rigorous solutions are not observable in the previously obtained solutions
which contain the inadmissible oscillatory stress and deformation [3,5]. The
[(£8)/(£6)/90°/90°], graphite-epoxy system is studied also because this
lamination system, especially the one with [(%30°)/(%30°)/90°/90%], fiber
orientations, 1s currently being considered for use in the evaluation of

interlaminar fracture toughness of composite materials under static and cyclic

loading [16,17]. The ply elastic properties of high-modulus unidirectional
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graphite—epoxy given in Eq. 28 of Ref, [1] are used in all computations. In
the [0/-0/-0/08] composites, the following lamination and geometric parameters
are employed: hy; = hy = h = 0.25 inch and b/h = 8, whereas in the
[(tS)/(tO)/90°/§5?]s composite laminates, actual dimensions of unidirectional
graphite-epoxy used in laboratory experiments [16,17] are taken, i.e.,

h; = hy = ... = h)) = 0,0054 inch and b = 0.75 inch. Moreover, in all cases
studied in this paper the composite laminates are considered to be subjected
to uniform axial extension €, = €, along the z direction,

Since the interlaminar crack-tip deformation and fracture mechanisms are
governed by the asymptotic field solutions, we shall examine the fundamental
behavior and associated characteristics of composite delamination in terms of
interiaminar fracture mechanics parameters, i.e.,, crack-tip stress

intensities, strain energy release rates, and crack-surface closure.

5.1 Influence of Fiber Orientation

The behavior of a delamination in the relatively simple angle-ply [tﬂ]a
laminates is significantly influenced by the fiber orientation 6. Results
obtained by using the iterative solution scheme in Section 3.2 reveal that the
delamination always possesses a finite-length crack-tip closure., Assuming
that the crack surface is in frictionless contact, we fini that the closure
length is global in general. For example, in the [tels graphite-epoxy with
edge delaminations of length a = 0,25 inch, signifficant crack closure is found
in each case studied (Table 3). The contact-zone size, c/a, varies from
approximately two-tenths to more than cne-third of total delamination length
for 0 ranging between 15° to 60°. The crack-tip closure results in a negative
opening-mode stress intensity factor Ky < 0 and an identically vanishing
energy release rate G; = 0, as shown in Tables 4 and 5. Thus, the

delamination behavior in the [6/-~6/-6/8] composites 1s apparently governed by
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interlaminar shear stresses and deformations. In Tables 4 and 5, the out~of-
plane tearing-mode (mode III) stress intensity factor Kyyr and associated
energy release rate Gj are clearly the dominant ones controlling the
delamination fracture. (The values of Kyyp and G- are several orders of
magnitude higher than those of Kyy and Gy.) Also, the composite with 6 = 15°
possesses the highest Kyy; and Gj among all 8's studied. These results
suggest that in symmetric angle-ply composites, delamination initiation and
growth are more intimately assuciated with local interlaminar shear then
transverse normal stress,

We reiterzta that the solutions obtained here by the use of the present
interlaminar crack~closure model and the rigorous mathematical {(combined theo-~
retical and numerical) approach are physically admissible and meaningful, as
contrary to the praviously obtained inaduissible, oscillatory solutions from
an eigenfunction expansion approach with the assumption of a fully opeun crack.

In the more complex graphite-epoxy laminates with [(tB)/(te)/90°/-9-5:]B
ply orientations, delaminations are always observed to occur between the -6
and 90° plies [16,17). Starting with the partfally closed crack model and
using the iterative solution scheme, we find that the closure length of a
delamination is less than 1070 inch. Thus, for this extremely small crack
closure the simplified model with an inverse square-root stress singularity
discussed in Section 4.3 ot [1] and in [5,6] is employed. In Figs. 6 and 7,
variations of stress intensities K; and energy release rates Gy with fiber
orientation 6 are shown for a delamination of length a = 0.5b. The crack tip
is apparently governed by the opening- and inplane shearing-mode stresses; the
Ky and Ky are one order of magnitude higher than Kyyy for all 6's studied.
The value of G3 is vanishingly small in general, and G| and G, are three

orders of magnitude higher than Gj because of the extremely small value of
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A3. Note that values of G;, Gy and Gy depend not only on K; but also on A; as
indicated in Eqs. 12 and 27(b). [Unfortunately, an explicit relationship
among Ay, ply elastic cuactants, lamination parameters, geometric, and loading
variables needs to be determined numerically because of the complex algebra
involved.] We remark that the maximum K; and Gy appear at 6 = 32.5° and the
meximum Kyy and G, occur at 8 = 35° in the [(te)/(ta)/90°/§53]s graphite-epoxy
system. The selection of [(:l:30°)/(:|:30°)/90°/§6?ls lamination in the recently

proposed interlaminar fracture toughness tests [16,17] using edge-delamination

composite snecimens is therefore a proper choice.

5.2 Influeonce of Ply Thickuness

The ply thickness is an important geometric variable in studying the
delamination behavior of composites. Changing the laminar thickness in a
laminate alters the lateral constraint of adjacent plies in the thickness
direction and, thus, directly affects the interlaminar crack behavior. For
illustration, fracture mechanics solutions for the [45°/-45°/-45°/45°]
graphite-epoxy composites with several ply thicknesses are presented in this
section, For simplicity and without introducing further complications, the
laminate width 2b and thickness 2W as well as the delamination length a are
kept constant as before, while variation of ply thicknesses h; and F, (with hy
+ hy = W = 0.5 inch) 18 considered.

As shown in Figs. 8-10, altering the ply thickness h;/W has appreciable
effects on the fundamental behavior of the delamination. For ianstance, when a
thick outer 45° ply is used, say, h;/W > 0.8, the entire delaminatica surface
is in contact with the other (Fig. 10), leading to a negative Ky with G, =
0. Delamination fracture in this situation is governed by :he tearing-mode
stress intensity factor Kyjp and the assoclated energy release rate Gj (Figs.

8 and 3). When equal ply thickness, i.e., h; = ho, is used, the in-plane
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shearing-mode stress intemsity Kyy and the energy release rate G, are about

zero, and Kyyy has the maximum stress intensification. However, as the outer
45° ply becomes thin, e.g., h) < 0.2W, the surfaces of delamination are opened
up, i.e., ¢c/a = 0, as shown in Fig. 10. In this situation, coatributions of
Ky and Kyy to the local failure become increasingly appreciable; Kyy and Kypy
are of the same order of magnitude but Gy and G, are still relatively small as
compared to G3. In the limiting case of hy/W + 0, the in-plane shear could

become dominant to govern the delamination.

5.3 Influence of Interlamimar Crack Leangth
For the symmetric composite laminates with either [#8]; or

[(£9)/(£08)/90°/90°]. fiber orientations, the interlaminar crack-tip behavior

ls
is affected by the size of delamination. As discussed in Section 5.1, the
delamination in the [0/-8/-0/8] graphite-epoxy system has a global crack
closure. Figure 1l reveals general characteristics of the crack closure in
the delaminated [45°/-45°/-45°/45°] graphite-epoxy. Under a uniform axial
strain €,, the crack closure increases monotonically with crack length until
the delamination becomes about two-ply thicknesses. As the delamination
extends further, the closure lengtn approaches an asymptotic value of c/h =
0.375, indicating that crack growth is governed by the interlaminar shear Tyz

and the tearing-mede stress intensity factor Kyyjy, as shown in Fig. 4. The

values of T Kiy and G, are orders of magnitude smaller than those of Tyzs

Xy?
Kryr and G3 (Figs. 4 and 5). Note again that crack closure occurs for all
a/h's in the [45°/-45°/-45°/45°] graphite-epoxy, leading to an identically
zero Gy and negative opening-mode stress intensity factor Ky < 0. In the case

of a very small delamination ewmanating from a free edge under rising load, the

interlaminar crack 1is inherently unstable and ext. ds rapidly to about one or

two-ply thicknesses (i.e., the plateaus in Igs. - and 5) before stable growth
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would occur. This phenomenon has been indeed observed in laboratory
experiments of edge-delamination tests of [(t30°]/t(30°)/90°/-§5?]8 T300-5208
graphite-epoxy composite laminates [16].

In the [(t30°)/(t30°)/90°/-9-5?ls graphite-epoxy containing delaminations
between -30° and 90° plies, the delamination is found to be open all along the
crack surface for any given ¢/h, as discussed in Section 5.1. The solutions
for K; and G; as a function of delamination length a/b are given in Figs. 12
and 13. Also shown in Fig. 13 are the results reported in [16] by using a
conventional nonsingular finite element method in conjunction with a virtual
crack-closure scheme for calculating the strain energy rztes [18]. The
difference is very appreciable to warrant the necessity of using the advanced
analytical and aumerical technique for solving the delamination problem
accurately. We observe that local delamination growth in the
[(t30°)/(t30°),’90°/§67’.]s graphite—epoxy is governed by an inhereantly three-
dimensional mixed-mode fracture process because the simultaneous presence of
significantly high values of Ky, Kjy and Kjyy showr in Fig. 12. Owing to the
vanishingly small A3, the value of Gy is found to be negligible in comparison
with Gy and G (Fig. 13). We remark thet in the limiting cas of a very small
delamination crack (i.e., a/h + 0), interactions occur betweepr the
delamination crack tip and the laminate edge, leading to a slightly higher
value of Kyyy as showm in Fig. 12.

A salient feature shown in Figs. 4, 5 and 12, 13 is that the stress
intensity factors K; and energy release rates G; become independent of the
crack length a/h or a/b as the delamination extends beyound a few ply
thicknesses. This unique feature has been observed and used in the

experimenta) study of 1interlaminar fracture toughness of composite laminates
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{16,17]. Provided that the K; and G; are accurately determined by appropriate
methods such as the preseat one, the stress intensity factors and energy
release rates associated with observed edge delamination initiation and growth

may be useful for characterizing delamination fracture and interlaminar crack

resistance of composite laminates.
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6. SUMMARY AND CONCLUSIONS

General expressions of stress and deformation fields in a fiber composite
laminate with delaminations have been obtained from presently developed
anisotropic laminate elasticity theory and basic concepts of iaterlacinar
fracture mechanics. Fracture mechanics parameters such as stress intensity
factors and energy release rates for delaminations with different crack-tip
deformation configurations are defined in a manner consistent with those for a
homogeneous crack and for the refined model of an interface crack between
dissimilar isotropic solids [7,8]. In finite-dimersional composite laminates
with complex lamination ard geometric varlables, an advanced numerical method
employing special singular crack-tip finite elements is developed for modeling
the delamination., Exact delamination stress singularities obtained from the
laminate elasticity solution are included in the crack-tip element
formulation. Solution convergence and accuracy have been studied to ensure
the validity of the results and to demonstrate the efficiency and
effectiveness of the method. To illustrate the fundamental nature of
composite delamination, numerical results are showan for the [6/-6/-08/0] and
[(te)/(te)/90°/§53]s graphite—epoxy laminate systems containing edge
delaminations under uniform axial extension. Fracture mechanics parameters
and failure modes associated with the composite delamination are determined
for each case. The basic mechanics and mechanisms of delamination are studied
for the composites with different lamination and geometric variables and crack
parameters. Based on the results obtained, the following conclusions may be

reached:
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(1) To study the fundamental mechanics of delamination in a composite
laminate having a large number of plies with different fiber orientationmns,
advanced numerical methods such as the present one are essential to take iato
account the crack-tip singularity and the large number of lamination,
material, and geometric variables involved.

(2) In the crack-tip element formulation, the inclusion of delamination
stress singularities determined from the laminate elasticity solution by using
an eigenfunction expansion method leads to very accurate solutions with a
rapid rate of convergence. This is particularly advantageous for studying
delamination problems in composite laminates with complex lamination,
geometric, and material variables.

(3) Since the singular eigenvalues and their algebraic multiplicity are
different for different crack tip deformation configurations, the crack
element formulation and solution strategy for each delamination problem need
to be treated on an individual basis. Stress intensity sclutions and energy
release rates in each case should be evaluated in accordance with the
appropriate delamination models given in Section 2.

(4) The state of stress and deformation in the vicinity of a delamination
crack tip are three dimensional in general. The asymptotic solutions can not
be determined accurately by using classical lamination theory nor by any
approximate methods without including interlaminar stresses and the correct
stress singularities associated with the delamination. The current laminate
elas:icity solution and associated numerical method provide accurate
ioformation on the singular nature of the crack tip and complete field

solutions for the delamination problem.
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(5) The singular delamination stress field may be characterized by the
presently introduced interlaminar fracture mechanics parameters. Crack-tip
stress intensity factors K; and energy release rates G; can be determined only
by solving the complete boundary-value problem. In contrast to the singular
eigenvalues which depend only ou local boundary conditions and material
properties of adjacent plies, the K; and G; are functions of all lamination
and geometric parameters, remote loading conditions, and crack variables.

(6) Owing to the local nature of interlaminar fracture, the mechanics and
mechanisms of delamination growth are governed by the crack-tip stress
intensity factors. In angle-ply [0/-6/-0/08] graphite—epoxy, crack-tip closure
occurs and, thus, K; < 0; delamination growth may be, therefore, more
intimately related to interlaminar shear stresses and interface shear strength
than the transverse normal stress. In the cases of [(tB)/(tB)/90°/§53]s
graphite-epoxy, crack surfaces are open and delamination growth is controlled
by all of the three-dimensional, mixed-mode stress intensity factors, Ky, Ky,
and Kyyge.

{7) While the K; govern local deformation and delamination fracture, the
G; are related to the global structural response and less sensitive to the
local deformation and fracture. For example, the total G and G3 differ oaly
slightly between the cases of a delamination with a closed and aan open crack
tip in the [6/--6/-0/9] graphite-epoxy composite. Thus, K; may provide a more
sensitive measure and, thus, becter fracture parameters than G; for evaluating
the composite delamination growth.

(8) Influences of lamination varlables such as fiber orientation and ply
thickness on the delamination behavior are significant. Changing fiber
orientation generally alters failure modes appreciably. For instance, in

[(:!:6)/(:!:8)/90”/353]s graphite-epoxy, the opening-mode (Ky) dominated
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delamination fracture changes into a shearing-mode (Kyy) controlled failure,
as the 0 becomes greater than 40°. Also, increasing ply thickness hy/W in
[6/-8/-08/6] graphite—epoxy affects the failure mode from a shearing-dominated,
open delamination fracture to a closed one.

(9) Stress intensity solutions and energy release rates appear to be
independent of crack length during the growth of an edge delamination, as long
as the crack exceeds a length of few ply thicknesses {3,19]. This unique
feature in composite edge-delamination is being used for evaluating of
interlaminar fracture toughness of fiber composite laminates [16,17], provided
that the K; and Gy can be calculated accurately by using advanced analytical

methods such as the present one.
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TABLE 1

Delamination Stress Intensity Factors Ki+ Agsociated with
Finite-Element Mesh Refinement in [45°/-45°/-45°/45°] Graphite-Epoxy

No. of Element Size *

Elements (Ah/h) KI l(II KIII
72 0.25 ~0.6458E-1 0.3424E-2 -0.7114E ©
84 0.125 ~0.6219E-1 0.2463E-2 -0.6967E O
96 0.0625 ~0.6141E-1 0.1796E-2 -0.6894E O
108 0.03125 ~0.6152E-1 0.1401E-2 ~0.6855E 0

TKi are normalized by 1065o (psi-vin) .

*
Closed crack tip with c¢/a = 0.34.
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TABLE 2

Delamination Lnergy Release Rates Gi* Associated with
Finite-Element Mesh Refinement in [45°/-45°/-45°/45°] Graphite-Epoxy

No. of Element Size C * G G
Elements (Ah/h) 1 2 3
72 0.25 0. 0.6855E-6 0.1533E O
#4 0.125 0. 0.5528E-6 0.1519E O
96 0.0625 0. 0.4619E-6 0.1512E O
108 0.03125 0. 0.3943E-6 0.1508E 0

+Gj are normalized by 1056§ (1b-in/in?).

*
Closed crack tip with ¢/a = 0.34
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TABLE 3

*
Influence of Fiber Orientation on Crack-Tip Closure Length+
for a Delamination in [6/-8/-6/6] Graphite-Epoxy Composite

0 c/a
0° 0.0
15° 0.2292
30° 0.2834
45° 0.3402
60° 0.3603
+

hl =h, 6 =0.25 in., b = 2 in.;
a=0.25 in.

* -6
at strain eo = 10
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TABLE 4

*
Effects of Fiber Orientations on Stress Intensity Solution$
for Delamination in [0/-6/-8/6] Graphite-Epoxy Composite

o Ky K11 K

0° 0. 0. 0.
15° -0.3782°-1 0.3866E-2 -0.2379E 1
30° -0.1072E 0 0.8744E-2 ~0.1943E 1
450 ~0.6152E 0 0.1401E-2 -0.6855E 0
60° -0.8599E-2 0.2034E-3 -0.9270E-1
1.

h; = hy = 0.25 4n., b = 2.0 in.; a = 0.25 in.

*
Ky are scaled by 1065:O [psi-/ﬁ;].
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TABLE 5

*
Effects of Fiber Orientation on Strain Energy Release Rates
for a Delamination in [0/-6/-68/8] Graphite-Epoxy Composite

++

8 Gl G2 G3

0° 0. 0.0 0.0
15° 0. 0.6059E-5 0.2111E 1
30° 0. 0.2748E-4 0.1074E 1
45° 0. 0.3943E-6 0.1508E 0
60° 0. 0.1425E-7 0.3597E-2
*hl =h,=0.254n., b =2 in.; a = 0.25 in.

* “

Gi are scaled by (10°e§)[1b-in/in2].
+

G1 is identically zero due to crack-tip closure.
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9. LIST OF FIGURE CAPTIONS

(a) Six-Node Quasi Three-Dimensional Crack-Tip Element with Singular
Derivatives; (b) Eight-Node Quasi Three-Dimensional (nonsingular)
Isoparametric Element.

Arrangement of Special Crack-Tip Elements for the Composite
Delamination Problem.

Overall and Local Crack-Tip Finite-Element Mesh Arrangements for
Modeling Delamination in [45°/-45°/-45°/45°] Graphite-Epoxy
Composite.

Comparison of Stress Intensity Solutions Obtained by Two Different
Models/Approaches for Delamination in [45°/-45°/-45°/45°] Graphite-
Epoxy Subjected to Uniform Axial Strainm g, = €,

(hy = hy = h = 0.25 in., b/h = 8 in., a = 0.25 1n.).

Comparison of Energy Release Rates Determined by Two Different
Models/Approaches for Delamination in [45°/-45°/-45°/45°] Graphite-
Epoxy Subjected to Uniform Axial Strainm € €

(b, =hy = h = 0.25 in., b/h = 8, a = 0.25 1a.9.

Variation of Stress Intensity Factors K; with Fiber Orientation 6 for
Delamination in [(48)/(48)/90°/90°]; Graphite-Epoxy uunder Uniform
Axial Strain €, = €, (hy = hp = ... = h}; = 0.0054 in.,

b= 0.75 in., a = 0.5b).

Variation of Strain Energy Release Rates G; with Fiber Orientaticns 8
for Delamination in [(28)/(20)/90°/90°]; Graphite-Epoxy uader Uniform
Axial Strain e, = ¢, (h) = hyp = ... =h)} = 0.0054 in., b = 0.75 in.,
a = 0.5b).

Influence of Ply Thickness hy/W on Stress Intensity Factors for
Delamination in [45°/-45°/-45°/45°] Graphite-Epoxy Subjected to
Uniform Axial Strain €, = €, (h} + hy = W = 0.5 in., 2b/W = 8,
a=0,25 in.).

Influence of Ply Thickness h;/W on Energy Release Rates Gy for
Delamination in [45°/-45°/-45°/45°] Graphite-Epoxy Subjected to
Uniform Axial Strain, €, = €, (h} + hy = W = 0.5 in., 2b/W = 8,
a= 0.25 in.).

Crack-Tip Closure Length as a Function of Ply Thickness h;/W for
Delamination in [45°/-45°/-45°/45°] Graphite-Epoxy Subjected to
Uniform Axial Strain €, = ¢, (h} + hy = W = 0,5 in., 2b/W = 8,
a= 0,25 in.).

Crack-Tip Closure Length c/h as a Function of Delamination Size a/h
in f45°/~45°/-45°/45°] Graphite-Epoxy Subjected to Uniform Axial
Strain €, = ¢, (h} = hy = h = 0.25 in., b/h = 8, a = 0.25 in.).
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Fig. 12 Change of Stress Intensity Solutions K; with Delamination Length a’b

Fig. 13

in [(t30°)/(1-30")/90°/90°]s Graphite-Epoxy Subjected to Uniform Axial
stl‘aln ez = € (hl = hz oee = hll = 0.0056 1“.’ b = 0 75 1[1.).

Change of Strain Ener7%0‘ lease Rates Gy with Delamination Length a/b
in [(t30°)/(t30° 190° lg Graphite*Epoxy Subjected to Uniform Axial
Stl‘ain E = eo (hl = hz B 00 = hll = 0 0056 1“0, b = 0.75 1“-).
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Fig. 1 (a) Six-Node Quasi Three-Dimensional Crack~Tip Element with
Singular Derivatives; (b) Eight-Node Quasi Three-Dimensional
(nonsingular) Isoparametric Element.
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Influence of Ply Thickness h;/W on Stress Intensity Factors for
Delaminatica in [45°/-45°/-45°/45°] Graphite-Epoxy Subjected to
Uniform Axial Strain €, = ¢, (hy + hy = W = 0,5 in., 2b/W = 8, g =

0025 inn)o
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Fig. 9 Influence of Ply Thickness hl'w on Energy Release Rates Gy for

Delamination in [45°/-45°/-45°/45°] Graphite-~Epoxy Subjected to
Uniform Axial Strain, €, = ¢, (h) + hy = W = 0,5 {n., 2b/W = 8,a =
0.25 in.).
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APPENDIX 1

Shape Functions N (0,£;5) for the Singular Delamination Crack-Tip Elemeat

Corresponding to a singular eigenvalue §, the shape functioans Ns in local
triangular polar coordinates (p,£) for the six-node counforming crack-tip

element in the delamination problem are shown [4] to have the following
expressions:

N, = 1+ 122200070, (Al-1)
Ny 3agy = 2 op0-0)/27-1) - oM i2ea-eri-27%-n), (A1-2)
Ny cgary = 206/ 20-1) - 0% ze-e+er 27501, (A1-3)
N gay = - [200-020% -0 /270, (A1-4)
N (12eg) = 400 EQ-E), (AL-5)
Ny (1seqy = - 2106 e/ @700, 1 = 1,2,3), (A1-6)

where the singular eigenvalues §'s are determined in accordance with the local
crack-surface boundary conditions discussed in Section 2.1, and the p and §
are related to the global coordinates by

(xz—xl) tan ¢ -(YZ’YI)

&= (y3-y2) -(53—x2) tan ¢’

(Al1-7)

p = r/E(E), (A1-8)

in which
f(g) = {(xz-xl)2+(y2-y1)2+2£[(xz-xl)(x3-x2)+(y2-yl)(y3-y2)l

2 (xy %) P4y, Y2 (A1-9)
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APPENDIX 2

Iteration Scheme for Part.ally Closed Delamination

For a delamination with crack surfaces in finite-length contact, the
following iteratio. scheme is used for determining contact stress and crack
closure length:

(1) Assume an initial contact length c¢;, and solve Eq. 21 with the side
conditions Eqs. 23(a) and 23(b) for contact siress and displacement.
(11) Check the solution against preset criterion ng. If the compressive
stress F) = o5(-—cy,m) gives a n; [m = I(Fl'Fo)/Fol» and F, is a
properly selected sealing factor, for example, F, is set as 106 €
(psi), in the present calculation.] such that n; < ng and if the
displacement field is admissible (i.e., no overlapping or
interpenetration beyond the contact region), we set the crack closure
length ¢ = ¢| and terminate the iteration.
(iii) If the two coanstraint conditions are not met, a new contact length cp >
cj is assumed and the prncedure of (1) and (ii) is repeated for F, and
02.
(1v) If F;, <0 (1 = 1,2) and anI > |n1| > ng, the next assumed length cj3
should be cj < ¢}, and repeat (iii) and (iv).
(v) If either Fy < 0 and |ny| > |ny| > ng or FyFy < 0 and |ng| > €, the
next assumed contact length is set as

Cq = Cy + Fz(cz-cl)/(Fl-Fz). (A2-1)

The iteration from (i)-(1i1i) coatinues until sufficient accuracy is

reached.
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(vi) As the constraint conditions are satisfied and the difference between

assumed contact lengths is lcn+1‘°n' < &g the iteration is terminated

with ¢ = l/2 |°n+l+cn|'



